Home / News & Analysis / The new era in mobile

The new era in mobile

Joe Apprendi
Contributor

Joe Apprendi is a general partner at Revel Partners.

More posts by this contributor

A future dominated by autonomous vehicles (AVs) is, for many experts, a foregone conclusion. Declarations that the automobile will become the next living room are almost as common — but, they are imprecise. In our inevitable driverless future, the more apt comparison is to the mobile device. As with smartphones, operating systems will go a long way toward determining what autonomous vehicles are and what they could be. For mobile app companies trying to seize on the coming AV opportunity, their future depends on how the OS landscape shapes up.

By most measures, the mobile app economy is still growing, yet the time people spend using their apps is actually starting to dip. A recent study reported that overall app session activity grew only 6 percent in 2017, down from the 11 percent growth it reported in 2016. This trend suggests users are reaching a saturation point in terms of how much time they can devote to apps. The AV industry could reverse that. But just how mobile apps will penetrate this market and who will hold the keys in this new era of mobility is still very much in doubt.

When it comes to a driverless future, multiple factors are now converging. Over the last few years, while app usage showed signs of stagnation, the push for driverless vehicles has only intensified. More cities are live-testing driverless software than ever, and investments in autonomous vehicle technology and software by tech giants like Google and Uber (measured in the billions) are starting to mature. And, after some reluctance, automakers have now embraced this idea of a driverless future. Expectations from all sides point to a “passenger economy” of mobility-as-a-service, which, by some estimates, may be worth as much as $7 trillion by 2050.

For mobile app companies this suggests several interesting questions: Will smart cars, like smartphones before them, be forced to go “exclusive” with a single OS of record (Google, Apple, Microsoft, Amazon/AGL), or will they be able to offer multiple OS/platforms of record based on app maturity or functionality? Or, will automakers simply step in to create their own closed loop operating systems, fragmenting the market completely?

Automakers and tech companies clearly recognize the importance of “connected mobility.”

Complicating the picture even further is the potential significance of an OS’s ability to support multiple Digital Assistants of Record (independent of the OS), as we see with Google Assistant now working on iOS. Obviously, voice NLP/U will be even more critical for smart car applications as compared to smart speakers and phones. Even in those established arenas the battle for OS dominance is only just beginning. Opening a new front in driverless vehicles could have a fascinating impact. Either way, the implications for mobile app companies are significant.

Looking at the driverless landscape today there are several indications as to which direction the OSes in AVs will ultimately go. For example, after some initial inroads developing their own fleet of autonomous vehicles, Google has now focused almost all its efforts on autonomous driving software while striking numerous partnership deals with traditional automakers. Some automakers, however, are moving forward developing their own OSes. Volkswagen, for instance, announced that vw.OS will be introduced in VW brand electric cars from 2020 onward, with an eye toward autonomous driving functions. (VW also plans to launch a fleet of autonomous cars in 2019 to rival Uber.) Tesla, a leader in AV, is building its own unified hardware-software stack. Companies like Udacity, however, are building an “open-source” self-driving car tech. Mobileye and Baidu have a partnership in place to provide software for automobile manufacturers.

Clearly, most smartphone apps would benefit from native integration, but there are several categories beyond music, voice and navigation that require significant hardware investment to natively integrate. Will automakers be interested in the Tesla model? If not, how will smart cars and apps (independent of OS/voice assistant) partner up? Given the hardware requirements necessary to enable native app functionality and optimal user experience, how will this force smart car manufacturers to work more seamlessly with platforms like AGL to ensure competitive advantage and differentiation? And, will this commoditize the OS dominance we see in smartphones today?

It’s clearly still early days and — at least in the near term — multiple OS solutions will likely be employed until preferred solutions rise to the top. Regardless, automakers and tech companies clearly recognize the importance of “connected mobility.” Connectivity and vehicular mobility will very likely replace traditional auto values like speed, comfort and power. The combination of Wi-Fi hotspot and autonomous vehicles (let alone consumer/business choice of on-demand vehicles) will propel instant conversion/personalization of smart car environments to passenger preferences. And, while questions remain around the how and the who in this new era in mobile, it’s not hard to see the why.

Americans already spend an average of 293 hours per year inside a car, and the average commute time has jumped around 20 percent since 1980. In a recent survey (conducted by Ipsos/GenPop) researchers found that in a driverless future people would spend roughly a third of the time communicating with friends and family or for business and online shopping. By 2030, it’s estimated the autonomous cars “will free up a mind-blowing 1.9 trillion minutes for passengers.” Another analysis suggested that even with just 10 percent adoption, driverless cars could account for $250 billion in driver productivity alone.

Productivity in this sense extends well beyond personal entertainment and commerce and into the realm of business productivity. Use of integrated display (screen and heads-up) and voice will enable business multi-tasking from video conferencing, search, messaging, scheduling, travel booking, e-commerce and navigation. First-mover advantage goes to the mobile app companies that first bundle into a single compelling package information density, content access and mobility. An app company that can claim 10 to 15 percent of this market will be a significant player.

For now, investors are throwing lots of money at possible winners in the autonomous automotive race, who, in turn, are beginning to define the shape of the mobile app landscape in a driverless future. In fact, what we’re seeing now looks a lot like the early days of smartphones with companies like Tesla, for example, applying an Apple -esque strategy for smart car versus smartphone. Will these OS/app marketplaces be dominated by a Tesla — or Google (for that matter) — and command a 30 percent revenue share from apps, or will auto manufacturers with proprietary platforms capitalize on this opportunity? Questions like these — while at the same time wondering just who the winners and losers in AV will be — mean investment and entrepreneurship in the mobile app sector is an extremely lucrative but risky gamble.

Check Also

Box releases Skills, which lets developers apply AI and machine learning to Box content

When you have as much data under management as Box does, you have the key ingredient for artificial intelligence and machine learning, which feeds on copious amounts of data. Box is giving developers access to this data, while letting them choose the AI and machine learning algorithms they want to use. Today, the company announced the general availability of the Box Skills SDK, originally announced at BoxWorks a year ago. Jeetu Patel, Box’s chief product officer and chief strategy officer, says Beta customers have been focusing on use cases specific to each company. They have been pulling information from different classes of content that matter most to them to bring an element of automation to their content management. “If there’s a way to bring a level of automation with machine learning, rather than doing it manually, that would meaningfully change the way that business processes can function,” Patel told TechCrunch. Among the use cases Box has been seeing with the 300 Beta testers, is using artificial intelligence to recognize the contents of a photo for the purpose of auto tagging, thereby eliminating the need for humans to do that tagging. Another example is in contract management where the terms are pulled automatically from the contract, saving the legal team from having to do this. Where this can get really powerful though is that the Skill can drive a more complex automated workflow inside of Box. If, for example, the Skill is driving the creation of automated metadata, that can in turn drive a workflow, Patel said. Box is providing the means to ingest Box data into a given AI or machine learning algorithm, but instead of trying to create those on its own, it’s been relying on partners who have more specific expertise such as IBM Watson, Microsoft Azure, Google Cloud Platform and Amazon Web Services. In fact, Box says it is working with dozens of AI and machine learning partners. For customers who aren’t comfortable doing any of this on their own, Box is also providing a consulting service, where it can come into a customer and help work through a set of requirements and choose the best algorithm for the job.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Disclaimer: Trading in bitcoins or other digital currencies carries a high level of risk and can result in the total loss of the invested capital. theonlinetech.org does not provide investment advice, but only reflects its own opinion. Please ensure that if you trade or invest in bitcoins or other digital currencies (for example, investing in cloud mining services) you fully understand the risks involved! Please also note that some external links are affiliate links.