Connect with us

The Online Technology

Machine vision that sees things more like we do is easier for us to understand

Explore Technology

Machine vision that sees things more like we do is easier for us to understand


A new image recognition algorithm uses the way humans see things for inspiration.

The context: When humans look at a new image of something, we identify what it is based on a collection of recognizable features. We might identify the species of a bird, for example, by the contour of its beak, the colors of its plume, and the shape of its feet. A neural network, however, simply looks for pixel patterns across the entire image without discriminating between the actual bird and its background. This not only makes the neural network more vulnerable to mistakes, it also makes it harder for humans to diagnose them.

How it works: Rather than train the neural network on full images of birds, researchers from Duke University and MIT Lincoln Laboratory trained it to recognize the different features instead: the beak and head shape of every species and the coloration of their feathers. Presented a new image of a bird, the algorithm then searches for those recognizable features and makes predictions on which species they belong to. It uses the cumulative evidence to make a final decision.

An example: For a picture of a red-bellied woodpecker the algorithm might find two recognizable features that it’s been trained on: the black and white pattern of its feathers and the red coloring of its head. The first feature could match with two possible bird species: the red-bellied or the red-cockaded woodpecker. But the second feature would match best with the former.

Real Life. Real News. Real Voices

Help us tell more of the stories that matter

Become a founding member

Based on the two pieces of evidence, the algorithm then reasons that the picture is more likely of the former. It then displays the pictures of the features it found to explain to a human how it came to its decision.

Why it matters: In order for image recognition algorithms to be more useful in high-stakes environments, such as to help a doctor classify a tumor, they need to be able to explain how they arrived at their conclusion in a human-understandable way. Not only is it important for humans to trust them, it also helps humans more easily identify when the logic is wrong.

Through testing, the researchers also demonstrated that adding this interpretability into their algorithm didn’t hurt its accuracy. On both the bird species identification task and a car model identification task, they found that their method neared—and in some cases exceeded—state-of-the-art results as compared to non-interpretable algorithms.

An abridged version of this story originally appeared in our AI newsletter The Algorithm. To have it directly delivered to your inbox, subscribe here for free.


Source link

Subscribe to the newsletter news

We hate SPAM and promise to keep your email address safe

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

To Top